In the News

WRN inhibition leads to its chromatin-associated degradation via the PIAS4-RNF4-p97/VCP axis

Synthetic lethality provides an attractive strategy for developing targeted cancer therapies. For example, cancer cells with high levels of microsatellite instability (MSI-H) are dependent on the Werner (WRN) helicase for survival. However, the mechanisms that regulate WRN spatiotemporal dynamics remain poorly understood. Here, we used single-molecule tracking (SMT) in combination with a WRN inhibitor to examine WRN dynamics within the nuclei of living cancer cells. WRN inhibition traps the helicase on chromatin, requiring p97/VCP for extraction and proteasomal degradation in a MSI-H dependent manner. Using a phenotypic screen, we identify the PIAS4-RNF4 axis as the pathway responsible for WRN degradation. Finally, we show that co-inhibition of WRN and SUMOylation has an additive toxic effect in MSI-H cells and confirm the in vivo activity of WRN inhibition using an MSI-H mouse xenograft model. This work elucidates a regulatory mechanism for WRN that may facilitate identification of new therapeutic modalities, and highlights the use of SMT as a tool for drug discovery and mechanism-of-action studies.

Read More

Optimized Properties and Synthesis of Photoactivatable Diazoketorhodamines Facilitate and Enhance High-Throughput Single-Molecule Tracking

Photoactivatable (PA) rhodamine dyes are widely used in single-molecule tracking (SMT) and a variety of other fluorescence-based imaging modalities. One of the most commonly employed scaffolds uses a diazoketone to lock the rhodamine in the nonfluorescent closed form, which can be activated with 405 nm light. However, poor properties of previously reported dyes require significant washing, which can be resource- and cost-intensive, especially when performing microscopy in a large scale and high-throughput fashion. Here, we report improved diazoketorhodamines that perform exceptionally well in single-molecule tracking microscopy. We also report on the optimization of an improved synthetic method for further iteration and tailoring of diazoketorhodamines to the requirements of a specific user.

Read More

A high-throughput platform for single-molecule tracking identifies drug interaction and cellular mechanisms

The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis. As a result, studies using super-resolution imaging are typically drawing conclusions from tens of cells and a few experimental conditions tested. We addressed these limitations by developing a high-throughput single-molecule tracking (htSMT) platform for pharmacologic dissection of protein dynamics in living cells at an unprecedented scale (capable of imaging > 106cells/day and screening > 104 compounds). We applied htSMT to measure the cellular dynamics of fluorescently tagged estrogen receptor (ER) and screened a diverse library to identify small molecules that perturbed ER function in real time. With this one experimental modality, we determined the potency, pathway selectivity, target engagement, and mechanism of action for identified hits. Kinetic htSMT experiments were capable of distinguishing between on-target and on-pathway modulators of ER signaling. Integrated pathway analysis recapitulated the network of known ER interaction partners and suggested potentially novel, kinase-mediated regulatory mechanisms. The sensitivity of htSMT revealed a new correlation between ER dynamics and the ability of ER antagonists to suppress cancer cell growth. Therefore, measuring protein motion at scale is a powerful method to investigate dynamic interactions among proteins and may facilitate the identification and characterization of novel therapeutics.

Read More